What Did You Learn?

Key Terms

infinite sequence, *p. 580* finite sequence, *p. 580* recursively defined sequence, *p. 582 n* factorial, *p. 582* summation notation, *p. 584* series, *p. 585* arithmetic sequence, p. 592 common difference, p. 592 geometric sequence, p. 601 common ratio, p. 601 first differences, p. 616 second differences, p. 616

Key Concepts

8.1 Find the sum of an infinite sequence

Consider the infinite sequence $a_1, a_2, a_3, \ldots, a_i, \ldots$

1. The sum of the first *n* terms of the sequence is the finite series or partial sum of the sequence and is denoted by

$$a_1 + a_2 + a_3 + \cdots + a_n = \sum_{i=1}^n a_i$$

where i is the index of summation, n is the upper limit of summation, and 1 is the lower limit of summation.

2. The sum of all terms of the infinite sequence is called an infinite series and is denoted by

$$a_1 + a_2 + a_3 + \cdots + a_i + \cdots = \sum_{i=1}^{\infty} a_i$$

8.2 Find the *n*th term and the *n*th partial sum of an arithmetic sequence

- 1. The *n*th term of an arithmetic sequence is $a_n = dn + c$, where *d* is the common difference between consecutive terms and $c = a_1 d$.
- 2. The sum of a finite arithmetic sequence with *n* terms is given by $S_n = (n/2)(a_1 + a_n)$.
- 8.3 Find the *n*th term and the *n*th partial sum of a geometric sequence
- 1. The *n*th term of a geometric sequence is $a_n = a_1 r^{n-1}$, where *r* is the common ratio of consecutive terms.
- **2.** The sum of a finite geometric sequence $a_1, a_1r, a_1r^2, a_1r^3, a_1r^4, \ldots, a_1r^{n-1}$ with common

ratio
$$r \neq 1$$
 is $S_n = \sum_{i=1}^n a_1 r^{i-1} = a_1 \left(\frac{1-r^n}{1-r}\right)$.

8.3 Find the sum of an infinite geometric series If |r| < 1, then the infinite geometric series $a_1 + a_1r + a_1r^2 + a_1r^3 + \cdots + a_1r^{n-1} + \cdots$ has the sum

$$S = \sum_{i=0}^{\infty} a_1 r^i = \frac{a_1}{1 - r}.$$

binomial coefficients, p. 619 Pascal's Triangle, p. 623 Fundamental Counting Principle, p. 628 sample space, p. 637 mutually exclusive events, p. 641

8.4 **Use mathematical induction**

Let P_n be a statement with the positive integer *n*. If P_1 is true, and the truth of P_k implies the truth of P_{k+1} for every positive integer *k*, then P_n must be true for all positive integers *n*.

8.5 Use the Binomial Theorem to expand a binomial

In the expansion of $(x + y)^n = x^n + nx^{n-1}y + \cdots + {}_nC_rx^{n-r}y^r + \cdots + nxy^{n-1} + y^n$, the coefficient of $x^{n-r}y^r$ is ${}_nC_r = n!/[(n-r)!r!]$.

8.6 Solve counting problems

- If one event can occur in m₁ different ways and a second event can occur in m₂ different ways, then the number of ways that the two events can occur is m₁ ⋅ m₂.
- 2. The number of permutations of *n* elements is *n*!.
- 3. The number of permutations of *n* elements taken *r* at a time is given by $_{n}P_{r} = n!/(n-r)!$
- 4. The number of distinguishable permutations of *n* objects is given by $n!/(n_1! \cdot n_2! \cdot n_3! \cdot \cdot \cdot n_k!)$.
- 5. The number of combinations of *n* elements taken *r* at a time is given by ${}_{n}C_{r} = n!/[(n r)!r!]$.

8.7 Find probabilities of events

- 1. If an event *E* has n(E) equally likely outcomes and its sample space *S* has n(S) equally likely outcomes, the probability of event *E* is P(E) = n(E)/n(S).
- 2. If *A* and *B* are events in the same sample space, the probability of *A* or *B* occurring is given by $P(A \cup B) = P(A) + P(B) P(A \cap B)$. If *A* and *B* are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$.
- **3.** If *A* and *B* are independent events, the probability that *A* and *B* will occur is $P(A \text{ and } B) = P(A) \cdot P(B)$.
- **4.** Let *A* be an event and let *A* ' be its complement. If the probability of *A* is P(A), then the probability of the complement is P(A') = 1 P(A).