What Did You Learn?

Key Terms

infinite sequence, p. 580
finite sequence, p. 580
recursively defined sequence, p. 582
n factorial, p. 582
summation notation, p. 584
series, p. 585
arithmetic sequence, p. 592
common difference, p. 592
geometric sequence, p. 601
common ratio, p. 601
first differences, p. 616
second differences, p. 616
binomial coefficients, p. 619
Pascal's Triangle, p. 623
Fundamental Counting Principle, p. 628
sample space, p. 637
mutually exclusive events, p. 641

Key Concepts

8.1 Find the sum of an infinite sequence

Consider the infinite sequence $a_{1}, a_{2}, a_{3}, \ldots a_{i}, \ldots \ldots$

1. The sum of the first n terms of the sequence is the finite series or partial sum of the sequence and is denoted by
$a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}$
where i is the index of summation, n is the upper limit of summation, and 1 is the lower limit of summation.
2. The sum of all terms of the infinite sequence is called an infinite series and is denoted by

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{i}+\cdots=\sum_{i=1}^{\infty} a_{i}
$$

8.2 Find the nth term and the nth partial sum of an arithmetic sequence

1. The nth term of an arithmetic sequence is $a_{n}=d n+c$, where d is the common difference between consecutive terms and $c=a_{1}-d$.
2. The sum of a finite arithmetic sequence with n terms is given by $S_{n}=(n / 2)\left(a_{1}+a_{n}\right)$.

8.3 Find the nth term and the nth partial sum of a geometric sequence

1. The nth term of a geometric sequence is $a_{n}=a_{1} r^{n-1}$, where r is the common ratio of consecutive terms.
2. The sum of a finite geometric sequence
$a_{1}, a_{1} r, a_{1} r^{2}, a_{1} r^{3}, a_{1} r^{4}, \ldots, a_{1} r^{n-1}$ with common
ratio $r \neq 1$ is $S_{n}=\sum_{i=1}^{n} a_{1} r^{i-1}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)$.

8.3 Find the sum of an infinite geometric series

If $|r|<1$, then the infinite geometric series $a_{1}+a_{1} r+$ $a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}+\cdots \cdot$ has the sum
$S=\sum_{i=0}^{\infty} a_{1} r^{i}=\frac{a_{1}}{1-r}$.

8.4 Use mathematical induction

Let P_{n} be a statement with the positive integer n. If P_{1} is true, and the truth of P_{k} implies the truth of P_{k+1} for every positive integer k, then P_{n} must be true for all positive integers n.

8.5 Use the Binomial Theorem to expand a binomial

In the expansion of $(x+y)^{n}=x^{n}+n x^{n-1} y+\cdots+$ ${ }_{n} C_{r} x^{n-r} y^{r}+\cdots+n x y^{n-1}+y^{n}$, the coefficient of $x^{n-r} y^{r}$ is ${ }_{n} C_{r}=n!/[(n-r)!r!]$.

8.6 Solve counting problems

1. If one event can occur in m_{1} different ways and a second event can occur in m_{2} different ways, then the number of ways that the two events can occur is $m_{1} \cdot m_{2}$.
2. The number of permutations of n elements is $n!$.
3. The number of permutations of n elements taken r at a time is given by ${ }_{n} P_{r}=n!/(n-r)$!
4. The number of distinguishable permutations of n objects is given by $n!/\left(n_{1}!\cdot n_{2}!\cdot n_{3}!\cdot \cdots n_{k}!\right)$.
5. The number of combinations of n elements taken r at a time is given by ${ }_{n} C_{r}=n!/[(n-r)!r!]$.

8.7 Find probabilities of events

1. If an event E has $n(E)$ equally likely outcomes and its sample space S has $n(S)$ equally likely outcomes, the probability of event E is $P(E)=n(E) / n(S)$.
2. If A and B are events in the same sample space, the probability of A or B occurring is given by $P(A \cup B)=P(A)+P(B)-P(A \cap B)$. If A and B are mutually exclusive, then $P(A \cup B)=P(A)+P(B)$.
3. If A and B are independent events, the probability that A and B will occur is $P(A$ and $B)=P(A) \cdot P(B)$.
4. Let A be an event and let A^{\prime} be its complement. If the probability of A is $P(A)$, then the probability of the complement is $P\left(A^{\prime}\right)=1-P(A)$.
