Circles and Circumference:

Key Concept Radius and Diameter Relationships Foryour If a circle has radius r and diameter d, the following relationships are true.

```
Radius Formula r=\frac{d}{2}\mathrm{ or }r=\frac{1}{2}d\quad\mathrm{ Diameter Formula }d=2r
```


A polygon is inscribed in a circle if all of its vertices lie on the circle. A circle is circumscribed about a polygon if it contains all the vertices of the polygon.

- Quadrilateral $L M N P$ is inscribed in $\odot K$.
- Circle K is circumscribed about quadrilateral $L M N P$.

Measuring Angles and Arcs:

Angles and Arcs A central angle of a circle is an angle with a
vertex in the center of the circle. Its sides contain two radii of vertex in the center of the circle. Its sides
the circle. $\angle A B C$ is a central angle of $\odot B$.

Arc Length Arc length is the distance between the endpoints along an arc measured
in linear unitss Since an arc is a portion of a circle, its length is a fraction of the
circumference.

Arcs and Chords:

Theorems

For Your
FOLDABLE
10.3 If a diameter (or radius) of a circle is perpendicular to a chord, then it bisects the chord and its arc.

Example If diameter $\overline{A B}$ is perpendicular to chord $\overline{X Y}$, then $\overline{X Z} \cong \overline{Z Y}$ and $\overparen{X B} \cong \overparen{B Y}$.
10.4 The perpendicular bisector of a chord is a diameter (or radius) of the circle.
Example If $\overline{A B}$ is a perpendicular bisector of chord $\overline{X Y}$, then $\overline{A B}$ is a diameter of $\odot C$.

Theorem 10.5

For Your
FOLDABLE
Words In the same circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

Example $L X=L Y$ if and only if $\overline{F G} \cong \overline{J H}$.

Inscribed Angles:

Inscribed Angles Notice that the angle formed by each streamer appears to be a right angle, no matter where streamer appears to be a right angle, no matter where
point P is placed along the arch. An inscribed angle has a vertex on a circle and sides that contain chords of the circle. In $\odot C, \angle Q R S$ is an inscribed angle.

An intercepted arc has endpoints on the sides of an inscribed angle and lies in the interior of the inscribed angle. In $\odot C$, minor arc $Q S$ is intercepted by $\angle Q R S$.

Wheorem 10.6 Inscribed Angle Theorem
WordsIf an angle is inscribed in a circle, then the measure of the angle equals one half the measure of its intercepted arc.
Example $m \angle 1=\frac{1}{2} m \overparen{A B}$ and $m \overparen{A B}=2 m \angle 1$

Theorem 10.8

Words An inscribed angle of a triangle intercepts a diameter or semicircle if and only if the angle is a right angle.
Example If $\overparen{F J H}$ is a semicircle, then $m \angle G=90$. If $m \angle G=90$, then $\overparen{F J H}$ is a semicircle and $\overline{F H}$ is a diameter.

Tangents:

Tangents A tangent is a line in the same plane as a circle that intersects the circle in exactly one point, called the point of tangency. $\overleftrightarrow{A B}$ is tangent to $\odot C$ at point $A . \overrightarrow{A B}$ and $\overrightarrow{A B}$ are also called tangents.
A common tangent is a line, ray, or segment that is tangent to two circles in the same plane. In each figure
 below, line ℓ is a common tangent of circles F and G.

Dheorem 10.10

For Your
FOLDABLE
Words In a plane, a line is tangent to a circle if and only if it is perpendicular to a radius drawn to the point of tangency.
Example Line ℓ is tangent to $\odot S$ if and only if $\ell \perp \overline{S T}$.

For Your
FOLDABLE
Theorem 10.11
Words If two segments from the same exterior point are tangent to a circle, then they are congruent.
Example If $\overline{A B}$ and $\overline{C B}$ are tangent to $\odot D$, then $\overline{A B} \cong \overline{C B}$.

Secants, Tangents, and Angle Measure:

Intersections On or Inside a Circle A secant is a line that intersects a circle in exactly two points. Lines j and \mathcal{K} are secants of $\odot C$.
When two secants intersect inside a circle, the angles formed are related to the arcs they intercept.

Concept Summary Circle and Angle Relationships		For Your
Vertex of Angle	Model(s)	Angle Measure
on the circle		one half the measure of the intercepted arc $m \angle 1=\frac{1}{2} x$
inside the circle		one half the measure of the sum of the intercepted arc $m \angle 1=\frac{1}{2}(x+y)$
outside the circle		one half the measure of the difference of the intercepted arcs $m \angle 1=\frac{1}{2}(x-y)$

Special Segments in a Circle:

Theorem 10.15 Segments of Chords Theorem

For Your
OLDABLE
Words If two chords intersect in a circle, then the products of the lengths of the chord segments are equal.
Example $A B \cdot B C=D B \cdot B E$

Theorem 10.16 Secant Segments Theorem

Words If two secants intersect in the exterior of a circle, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant and its external secant segment.

Theorem 10.17

Words If a tangent and a secant intersect in the exterior of a circle, then the square of the measure of the tangent is equal to the product of the measures of the secant and its external secant segment.
Example $J K^{2}=J L \cdot J M$

